\qquad Hour \qquad

LGHTNotes

We see an object in 2 ways:

1. The object is the source of light

Ex:
2. By light reflected from an object which enters our eyes a nd allows us to see object
\qquad : Energy in the form of electric and magnetic fields- called
electromagnetic radiation. Acts like both a particle and a transverse wave as it travels.
Types of Electroma gnetic Energy:

Electromagnetic Spectrum:
TV, Radio: long λ, low f
Infrared: Heat
Ultraviolet UV rays emitted Sun, ta nning booths Birds, bees may see them

X-rays: Firese- at Tungsten which releases x-rays
Gamma rays: high energy found in stars, cancer treat.

Cosmic rays: highest energy Solar fla res, supemovas

Light

Visible light is electromagnetic radiation with a λ of $4 \times 10^{-7} \mathrm{~m}$ to $7.5 \times 10^{-7} \mathrm{~m}$
*Tra vels in stra ight lines called \qquad
*Does NOTneed a \qquad to travel through (why light travels in space)
*Beha ves like both a \qquad and a \qquad

The speed of light is \qquad
Speed of light (c)= \qquad

If the wa velength of light inc reases, what will happen to the frequency of the wave?

Which color (puple or red) hasa greaterfrequency? (more waves/sec) Expla in your answer.
\qquad Hour \qquad

Spec trosc ope Lab:
Use the spectroscope to find the wavelength of each colored line, and then use $C=f x \lambda$ to calculate the frequency of each. Determine what each element is from list below.

Control/Practice: White Light

Unknown Element \#1:
\square

Unknown Element \#2: \qquad
\square

Unknown Element \#3:
\square
The frequencies of possible elements:
Mercury (3 lines): $6.7 \times 10^{14} \mathrm{~Hz}, 5.5 \times 10^{14} \mathrm{~Hz}, 5 \times 10^{14} \mathrm{~Hz}$
Hydrogen (3 lines): $7 \times 10^{14} \mathrm{~Hz}, 6.1 \times 10^{14} \mathrm{~Hz}, 4.3 \times 10^{14} \mathrm{~Hz}$
Neon (3 thick lines, 1 faint line): $5.5 \times 10^{14} \mathrm{~Hz}, 5 \times 10^{14} \mathrm{~Hz}, 4.6 \times 10^{14} \mathrm{~Hz}, 4.5 \times 10^{14} \mathrm{~Hz}$

Take home lab: Calculate the speed of light

1. Completely cover the bottom of a mic rowave safe casserole dish with marshmallows.
2. Cook on low heat until you see some parts of the marshma llows sta rt to melt.
3. Measure the distance between the melted spots: \qquad $\mathbf{c m}=$ \qquad m
4. The distance is equal to $1 / 2 \mathbf{a}$ wavelength. What is the mic rowave λ ? \qquad m
5. Determine the frequency of your mic rowave (use 2450 MHz if can't find it). \qquad Hz
6. Use $v=f \times \lambda$ to calculate the speed of light \qquad
7. Detemmine a \%error for your calculation. (acc-expt) x 100% \qquad Acc

Must be done in a non-rotating microwave!

